
Symbolic PathFinder:
Symbolic Execution of Java Bytecode

Corina S. Păsăreanu and Neha Rungta
NASA Ames Research Center, Moffett Field, CA 94035, USA

{corina.s.pasareanu,neha.s.rungta}@nasa.gov

ABSTRACT
Symbolic Pathfinder (SPF) combines symbolic execution with
model checking and constraint solving for automated test
case generation and error detection in Java programs with
unspecified inputs. In this tool, programs are executed on
symbolic inputs representing multiple concrete inputs. Val-
ues of variables are represented as constraints generated
from the analysis of Java bytecode. The constraints are
solved using off-the shelf solvers to generate test inputs guar-
anteed to achieve complex coverage criteria. SPF has been
used successfully at NASA, in academia, and in industry.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic Execution

General Terms
Reliability,Verification

Keywords
Automated test case generation, program analysis

1. INTRODUCTION
Symbolic execution is a popular analysis technique that

executes a program on symbolic, rather than concrete, in-
puts and it computes the program effects by manipulating
expressions in terms of these symbolic inputs. Symbolic ex-
ecution [6] was introduced in the 70s, but only recently has
found wider applicability in practice due to the availability of
new powerful decision procedures (necessary for manipulat-
ing symbolic expressions) and increased computation power.

We present Symbolic Pathfinder (SPF)–a tool for per-
forming symbolic execution of Java bytecode. SPF han-
dles inputs and operations on booleans, integers, reals, and
complex data structures with a polymorphic class hierarchy.
It handles preconditions as well as multi-threading. Fur-
thermore, SPF supports a mixed mode execution [7] that
combines concrete and symbolic execution. SPF also offers
preliminary support for String and bit-vector operations.

SPF has been used at NASA [7], to uncover subtle bugs
in flight software, in academia, to aid in various research
projects, and in industry, more recently at Fujitsu, to test

Copyright is held by the author/owner(s).
ASE’10, September 20–24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

web applications with over 60,000 SLOC. By solving the
symbolic input constraints for various coverage obligations,
SPF can been used as a customizable test generator. The
user can specify different code coverage metrics (e.g. MC/DC),
she can customize the search strategy for generating test
cases, and she can save the tests in different formats, such
as HTML tables or JUnit tests. Furthermore, SPF has
been used to generate counterexamples to safety properties
in concurrent programs with unspecified inputs [8] and for
proving light-weight properties of software. SPF is a freely
available open-source project [4].
Related Tools Unlike our previous work [1, 5], SPF does
not require a program instrumentation or a type-based anal-
ysis, and hence it is more efficient. Bogor/Kiasan [2], unlike
SPF, does not separate between concrete and symbolic data,
hence it can not support mixed concrete/symbolic execution.
Furthermore, it can not handle complex Math constraints.
Also related are concolic tools [9, 3], which perform a form
of symbolic execution along concrete program paths. The
tools work by program instrumentation and do not handle
multi-threading systematically.

2. TOOL DESCRIPTION
SPF is part of the Java PathFinder verification tool-set [4].

Java Pathfinder includes JPF-core, an explicit-state model
checker, and several extension projects, one of them being
SPF (jpf-symbc Java project). The model checker consists
of an extensible custom Java Virtual Machine (VM), state
storage and backtracking capabilities, different search strate-
gies, as well as listeners for monitoring and influencing the
search. JPF-core executes the program concretely based on
the standard semantics of the Java.

In contrast, SPF replaces the concrete execution seman-
tics of JPF-core with a non-standard symbolic interpreta-
tion. SPF relies on the JPF-core framework to systemati-
cally explore the different symbolic execution paths, as well
as different thread interleavings. To limit the possibly in-
finite search space that results from symbolically executing
programs with loops or recursion, a user-specified depth is
provided. We describe SPF’s features below (see Fig. 1).

Instruction Factory and Attributes SPF replaces the
standard concrete execution semantics by using a Symbol-

icInstructionFactory, that extends the bytecode instruc-
tions to manipulate symbolic values and expressions. For ex-
ample, when adding two symbolic integers sym1 and sym2

(by executing the IADD bytecode) the result is a symbolic
expression representing sym1 + sym2.

Storage of symbolic values and expressions is accomplished

179



Search Strategy

Constraint Solvers

Symbolic Instruction Factory
Program State

Threads HeapChoiceGenerator

Attributes

PCChoiceGenerator

SymbolicListener

SymbolicSeqListener

symbolic

symbolicStack Values

Heap Values

TestSuite/

Property

Coverage Criteria/

Java *.class files

Counterexamples

Choice Generators

Listeners

jpf-core
jpf-symbc

Figure 1: Architecture and features of SPF

by assigning symbolic attributes to variables, fields, and
stack operands. The attributes are not part of the (concrete)
program state and thus it is possible to use both concrete
and symbolic values during the same execution [7]. This can
be used, for example, to first perform a concrete execution of
the program to reach a “suspicious” state, from which point
on one can perform a detailed symbolic execution to stress
that state [7]. Furthermore, attributes allow for easy exten-
sion with other analyses that maintain both concrete and
symbolic data such as concolic execution [3].

Branching Conditions The symbolic execution of con-
ditional instructions (if statements) involves exploration
of two paths corresponding to the branch predicate eval-
uating to true and false; both choices are generated non-
deterministically by the PCChoiceGenerator. Each gener-
ated choice is associated with a path condition encoding the
condition and its negation respectively. The path conditions
are checked for satisfiability using off-the-shelf decision pro-
cedures or constraint solvers. If the path condition is satisfi-
able, the search continues; otherwise, the search backtracks
(meaning that branch is unreachable).

Decision Procedures/Constraint Solvers SPF uses
multiple decision procedures and constraint solvers through
a generic interface. Currently, SPF supports: choco for in-
teger/real constraints, cvc3 for linear constraints, and the
interval arithmetic solver IASolver. Adding support for ad-
ditional constraint solvers such as HAMPI and YICES is work
in progress.

Handling Input Data Structures SPF uses lazy ini-
tialization [5] to handle unbounded input data structures.
The execution starts on data structures with un-initialized
fields and it initializes them lazily, when the fields are first
accesed. A field of class T is initialized non-deterministically
to (1) null, (2) a reference to a new instance of class T with
uninitialized fields, or (3) a reference to an object of type T
created during a prior field initialization; this sytematically
treats aliasing. The HeapChoiceGenerator is used to gener-
ate the choices. We have recently extended SPF to provide
support for polymorphism. Step (2) above is replaced with
non-deterministically assigning new instances of class T and
of all the classes that inherit from T . Similarly, step (3) is
replaced with assigning previously created objects to class
T and objects from classes that inherit from T .

Handling Math Functions SPF uses JPF-core’s native
peers mechanism to model native libraries and any other
program parts that cannot be analyzed directly with sym-
bolic execution. Most notably, SPF incorporates native peers

Error Type SLOC States Time Memory
VecDeadlock0 Deadlock 7267 1370 4.56s 66 MB
VecDeadlock1 Deadlock 7169 2948 6.89s 69 MB
VecRace Race 7151 3120 7.98s 65 MB

Table 1: SPF Results

that capture the calls to the java.lang.Math libraries and
dispatch them to an appropriate constraint solver that can
handle complex Math constraints. The same mechanism is
also used for capturing String operations.

Symbolic Listeners The listeners gather and display in-
formation about the path conditions generated during the
symbolic execution. They generate test cases and sequences
in various user-defined formats.

3. RESULTS AND CONCLUSIONS
Table 1 gives the resources consumed when using SPF

to detect two deadlocks and a race-condition in the Vector

class in the JDK 1.4 library [8].
We presented Symbolic Pathfinder, a symbolic execution

tool for automatic test case generation and error detection
in Java programs. Although effort is being put in optimiz-
ing the analysis, the tool suffers from scalability issues due
to the exhaustive nature of the analysis it performs and the
constraint solving involved. Towards this end, we are work-
ing on parallelizing SPF [10].

Acknowledgments We would like to thank the people who
contributed to the tool: Hank Bushnell, Peter Mehlitz, Suzette
Person, Matt Staats, and Willem Visser.

4. REFERENCES
[1] S. Anand, C. Păsăreanu, and W. Visser. JPF–SE: A

Symbolic Execution Extension to Java PathFinder.
TACAS, pages 134–138, 2007.

[2] X. Deng, J. Lee, and Robby. Bogor/Kiasan: a
k-bounded symbolic execution for checking strong
heap properties of open systems. In ASE, 2006.

[3] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. SIGPLAN Not.,
40(6):213–223, 2005.

[4] Java PathFinder Tool-set.
http://babelfish.arc.nasa.gov/trac/jpf.

[5] S. Khurshid, C. Pasareanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. Proc. TACAS, pages 553–568, 2003.

[6] J. C. King. Symbolic execution and program testing.
Comm. ACM, 19(7):385–394, 1976.

[7] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing NASA
software. In Proc. ISSTA, 2008.

[8] N. Rungta, E. G. Mercer, and W. Visser. Efficient
testing of concurrent programs with
abstraction-guided symbolic execution. SPIN, 2009.

[9] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proc. ESEC/FSE-13,
pages 263–272, New York, NY, USA, 2005. ACM.

[10] M. Staats and C. Pasareanu. Parallel Symbolic
Execution for Structural Test Generation. In ISSTA.
ACM, 2010.

180


